19 G. Jung, W. Voelter, E. Breitmaier und E. Bayer
Chemisches Institut der Universität Tübingen, Germany

(Received in Germany 25 July 1969; received in UK for publication 18 August 1969)

Die Identifizierung von Zuckern über die Polyole ist eine wesentliche Aufgabe der analytischen Kohlenhydratchemie. In diesem Zusammenhang möchten wir über ${19 \over 9}$ F-NMR Messungen an verschiedenen trifluoracetylierten Polyolen berichten.

Zur Darstellung der Trifluoracetylderivate (1) werden die Polyole mit Trifluoressigsäureanhydrid bei einer Ölbadtemperatur von 60° 8 Stunden lang am Rückfluß erhitzt. Pro Hydroxylgruppe werden 2 Äquivalente Trifluoressig - säureanhydrid eingesetzt. Nach Abziehen des überschüssigen Trifluoressig - säureanhydrids und der entstandenen Trifluoressigsäure im Vakuum wird der Rückstand gaschromatographisch analysiert und getrennt (2,3).

Untersuchungen der Rückstände mit einem kombinierten GC-MS-Gerät (LKB 9000, Säule 4m, 1/8 inch, Cu, OV I (5 % auf Chromosorb PAW, 60-80 mesh)) zeigen, daß praktisch in jedem Fall vollständige Trifluoracetylierung eingetreten ist. Die zur ¹⁹₉F-NMR Messung verwendeten Trifluoracetylpolyole werden präparativ gaschromatographisch gereinigt (Aerograph 1520,

Säulen: 5 m, 8 mm, Apiezon L (10 % auf Chromosorb, 60-80 mesh) und 2,5 m 8 mm, OV17 (10 % auf Chromosorb, 60-80 mesh); 100 ml He/min; Temperatur-programm 100-280°).

Die ¹⁹F-NMR Spektren werden mit einem Jeol 4-100 94 MHz Gerät in ca. 40 %iger Deuterochloroformlösung gegen Trifluoressigsäuremethylester als internem Standard gemessen. Die Tabelle zeigt die im Rahmen der Meß - genauigkeit konzentrationsunabhängigen chemischen Verschiebungen der per - trifluoracetylierten Polyole. Durch Vergleich der aufgenommenen ¹⁹₉F-NMR Spektren ergibt sich, daß die CF₃ Signale der endständigen -CH₂OCOCF₃ Gruppen die kleinsten chemischen Verschiebungen gegen den Trifluoressigsäuremethylester-Standard zeigen. Die Zuordnung folgt aus dem Intensitätsverhältnis der Signale. Zu deren Kennzeichnung wird in der Tabelle folgende Nummerierung der Kohlenstoffketten zu Grunde gelegt:

$${}^{1}C - {}^{2}C - {}^{1}C$$

$${}^{1}C - {}^{2}C - {}^{2}C - {}^{1}C$$

$${}^{1}C - {}^{2}C - {}^{3}C - {}^{2}C - {}^{1}C$$

$${}^{1}C - {}^{2}C - {}^{3}C - {}^{3}C - {}^{2}C - {}^{1}C$$

Die Trifluoracetylderivate isomerer Polyole wie D- Ribit, D- Arabit und D- Xylit unterscheiden sich charakteristisch in der Lage ihrer Fluor - resonanzsignale. Somit eignet sich die Trifluoracetylierung zur Charakterisierung von Polyhydroxyverbindungen, da die Trifluoracetylderivate einfach darzustellen, gaschromatographisch zu reinigen und mit Hilfe der $\frac{19}{9}$ F-NMR Spektren eindeutig zu identifizieren sind.

Chemische Verschiebungen der $\frac{19}{9}$ F-NMR Signale von pertrifluoracetylierten Polyolen

Verbindung		Chemisc	he Ver	Chemische Verschiebungen	gen			
	$^{1}_{\mathrm{CH}_{2}}$ OC	CH2OCOCF3	2 CHOCOCF $_3$	COCF	3 CHOC	3 CHOCOCF $_3$	Intensitäts-	Bedingungen
	Hz	mdd	Hz	mdd	Hz	urdd	ver- hältnisse	ွ
TFA-Methanol	0.0							25
TFA-Glycol	0.0							25
TFA-1, 2-Propandiol	23.4	0, 249	25.4	0.27			1:1	25
TFA-1,3-Butandiol	24.3	0,258	29.7	0.316			1:1	25
TFA-1,4-Butandiol	9. 7	0.103	,					25
TFA-1,8-Octandiol	14.0	0.149						25
TFA-1,2-Cyclohexandiol (trans)	l (trans)		30.6	0.325				25
TFA-Glycerin	8.8	0.094	17.5	0.186			2:1	25
TFA-meso-Erythrit	19.8	0, 211	20.7	0.22			1:1	25
TFA-DL-Threit	21.0	0.224	21.0	0.224				25
TFA-Pentaerythrit	29.9	0.318						25
TFA-D-Ribit	19.9	0.212	27.7	0.295	34.3	0, 365	2:2:1	25
TFA-D-Arabit	18.6	0.198	24. 1	0.256	37.4	0.398	2:2:1	25
TFA-D-Xylit	24. 4	0.26	32. 5	0.346	46.6	0.496	2:2:1	25
TFA-D-Mannit	24.7	0.263	30.2	0.321	8.99	0. 71	1:1:1	09
TFA-D-Galactit	24.0	0,255	44.7	0.475	74.9	0. 797	1:1:1	09

- (1) T.G. Bonner, Adv. Carbohydrate Chem. 16, 59 (1961)
- (2) Während unserer Arbeiten über die GC-Trennung erschien auch ein diesbezüglicher Artikel von
 - J. Shapira, Nature 222, 792 (1969)
- (3) G. Jung, H. Pauschmann und E. Bayer, unveröffentlichte Ergebnisse

Den Herren Dipl.-Phys. J. Bestgen und G. Sielaff vom Institut für Physikalische Chemie und Kolloidchemie der Universität Köln danken wir sehr herzlich für die Aufnahme der $^{19}_{9}$ F-NMR Spektren.

Der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung dieser Arbeiten.